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Abstract

Constructing generative models for functional observations is an important task in statistical functional analysis. In
general, functional data contains both phase (or x or horizontal) and amplitude (or y or vertical) variability. Tradi-
tional methods often ignore the phase variability and focus solely on the amplitude variation, using cross-sectional
techniques such as fPCA for dimensional reduction and data modeling. Ignoring phase variability leads to a loss of
structure in the data and inefficiency in data models. This paper presents an approach that relies on separating the
phase (x-axis) and amplitude (y-axis), then modeling these components using joint distributions. This separation, in
turn, is performed using a technique called elastic shape analysis of curves that involves a new mathematical repre-
sentation of functional data. Then, using individual fPCAs, one each for phase and amplitude components, it imposes
joint probability models on principal coefficients of these components while respecting the nonlinear geometry of the
phase representation space. These ideas are demonstrated using random sampling, for models estimated from simu-
lated and real datasets, and show their superiority over models that ignore phase-amplitude separation. Furthermore,
the generative models are applied to classification of functional data and achieve high performance in applications
involving SONAR signals of underwater objects, handwritten signatures, and periodic body movements recorded by
smart phones.

Keywords: amplitude variability, function alignment, function principal component analysis, functional data
analysis, generative model, phase variability

1. Introduction

The problem of statistical analysis and modeling of data in function spaces is important in applications arising
in nearly every branch of science, including signal processing, geology, biology, and chemistry. The observations
here are time samples of real-valued functions on an observation interval, and to perform effective data analysis it
is desirable to have a generative, probabilistic model for these observations. The model is expected to properly and
parsimoniously characterize the nature and variability in the data. It should also lead to efficient procedures for
conducting hypothesis tests, performing bootstraps, and making forecasts. An interesting aspect of functional data is
that underlying variability can be ascribed to two sources. In a sample data the given functions may not be perfectly
aligned and the mechanism for alignment is an important topic of research. The variability exhibited in functions after
alignment is termed the amplitude (or y or vertical) variability and the warping functions that are used in the alignment
are said to capture the phase (or x or horizontal) variability. A more explicit mathematical definition of amplitude and
phase variability will be made in Section 2. It is imperative that any technique for analysis or modeling of functional
data should take both these variabilities into account.

1.1. Need for Phase-Amplitude Separation
Many of the current methods for analyzing functional data ignore the phase variability. They implicitly assume

that the observed functions are already temporally aligned and all the variability is restricted only to the y-axis.
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A prominent example of this situation is functional principal component analysis (fPCA) (see e.g., Ramsay and
Silverman (2005)) that is used to discover dominant modes of variation in the data and has been extensively used in
modeling functional observations. If the phase variability is ignored, the resulting model may fail to capture patterns
present in the data and will lead to inefficient data models.

Fig. 1 provides an illustration of this using simulated functional data. This data was simulated using the equation
yi(t) = zie−(t−ai)2/2, t ∈ [−6, 6], i = 1, 2, . . . , 21, where zi is i.i.d. N(1, (0.05)2) and ai is i.i.d. N(0, (1.25)2). The
top-left plot shows the original data; each sample function here is a unimodal function with slight variability in height
and a large variability in the peak placement. One can attribute different locations of the peak to the phase variability.
If one takes the cross-sectional mean of this data, ignoring the phase variability, the result is shown in the top-middle
plot. The unimodal structure is lost in this mean function with large amount of stretching. Furthermore, if one
performs fPCA on this data and imposes the standard independent normal models on fPCA coefficients (details of this
construction are given later), the resulting model will lack this unimodal structure. Shown in the top-right plot are
random samples generated from such a probability model on the function space where a Gaussian model is imposed
on the fPCA coefficients. These random samples are not representative of the original data; the essential shape of the
function is lost, with some of the curves having two, three, or even more peaks.

The reason why the underlying unimodal pattern is not retained in the model is that the phase variability was
ignored. We argue that a proper technique is to separate the phase and amplitude variability, using techniques for
functional alignment, and then develop a probability model for each component. While postponing details for later,
we show results obtained by a separation-based approach in the bottom row. The mean of the aligned functions is
shown in the bottom left panel of Fig. 1. Clearly retained is the unimodal structure and the random samples generated
under a framework that model the phase and amplitude variables individually have the same structure. Some random
samples are shown in the bottom right panel, these displays are simply meant to motivate the framework and the
mathematical details are provided later in the paper. This example clearly motivates the need for function alignment
for modeling functional data that contains phase variability.
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Figure 1: Samples drawn from a Gaussian model fitted to the principal components for the unaligned and aligned data.

1.2. Past Literature on Phase-Amplitude Separation

This brings up an important question: How to separate the phase and amplitude components in a given dataset?
While this is a topic of ongoing research, a number of techniques have already been discussed in the literature. The
main difference between them lies in the choice of the cost function used in the alignment process. The different
cost functions suggested in the statistics literature including area-under-the-curve matching (Liu and Muller (2004);
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Tang and Muller (2008)), minimum second-eigenvalue (MSE) (Kneip and Ramsay (2008)), moment based matching
(MBM) (James (2007)), self-modeling registration (Gervini and Gasser (2004)) and k-means alignment and clustering
(Sangalli et al. (2010a,b)).

In the meantime several other communities, often outside statistics, have studied registration of functions in one
or higher dimensions, e.g., in matching MRI images (Beg et al. (2005); Christensen and Johnson (2001); Tagare
et al. (2009)), shape analysis of curves (Joshi et al. (2007); Klassen et al. (2004); Kurtek et al. (2012); Michor and
Mumford (2006); Srivastava et al. (2011a); Younes (1998); Younes et al. (2008)), shape analysis of surfaces (Kurtek
et al. (2011a)), etc. The problem of curve registration is especially relevant for phase-amplitude separation needed
in functional data analysis since the case for R1 is essentially that for real valued functions! We will adapt a shape-
analysis approach that has been termed elastic shape analysis (Joshi et al. (2007); Kurtek et al. (2012); Srivastava et al.
(2011a)). Although these methods have been developed for alignment of curves in Rn, their application to functional
data analysis has been explained in Kaziska (2011); Kurtek et al. (2011b); Srivastava et al. (2011b). The basic idea
in this method is to introduce a mathematical representation, called the square-root slope function or SRSF (details in
the next section) that improves functional alignment and provides fundamental mathematical equalities that leads to a
formal development of this topic.

The theoretical superiority of the elastic method comes from the following fact: the alignment of functions is
based on a cost term that is a proper distance. Thus satisfying all desired properties in alignment, such as symmetry
(optimal alignment of f to g is same as that of g to f ), positive definiteness (the cost term between any two functions
is nonnegative and it equals zero if and only if one can be perfectly aligned to the other), and the triangle inequality.
None of the current methods in the statistics literature (e.g., Gervini and Gasser (2004); James (2007); Kneip and
Ramsay (2008); Liu and Muller (2004); Tang and Muller (2008)) have these properties. In fact, most of them are
not even symmetric in their alignment. Additionally, many past methods perform component separation and fPCA
in two distinct steps, under different metrics, while in elastic shape analysis it is performed jointly under the same
metric. In addition to these theoretical advantages, we have also emphasized the experimental superiority of elastic
curve analysis using a large number of datasets in this paper.

Another important issue, encountered in modeling phase variability, is to characterize the geometry of the phase
space. Generally speaking, phase variability is represented by a warping function γ that satisfies certain properties
such as boundary conditions, invertibility, smoothness, and smoothness of its inverse. Ramsay and Silverman (2005)
represent γ using a basis set in the log-derivative space, i.e., log(γ̇(t)) =

∑
i αibi(t). Some others force γ to be a

piecewise linear function with positive derivatives (Liu and Muller (2004)) and even linear functions (Sangalli et al.
(2010a,b)). It becomes clear that boundary conditions, combined with the smoothness and invertibility requirements,
restrict the set of allowable warping functions to a nonlinear space. Although it seems natural, the use of nonlinear
geometry of this set in establishing a metric for comparing warping functions and for performing fPCA has seldom
been studied in the functional data analysis literature. Srivastava et al. (2011a) have studied a square-root derivative
representation, similar to the one suggested by Bhattacharya (1943), for converting this set into a sphere and analyzing
warping functions as elements of a Hilbert sphere. The paper Srivastava et al. (2007) demonstrates the advantages of
using square-root derivative over the log-derivative representation of warping functions.

1.3. Proposed Framework
After the separation of phase and amplitude components, we will define two types of distances. One is a y-distance,

defined to measure amplitude differences between any two functions (and independent of their phase variability) and
computed as the L2 distance between the SRSFs of the aligned functions. The other is an x-distance, or the distance
on their phase components, that measures the amount of warping needed to align the functions. We will show that
either of these distances provides useful measures for computing summary statistics, for performing fPCA, and for
discriminating between function classes.

The main contribution of this paper is a modeling framework to characterize functional data using phase and
amplitude separation. The basic steps in this procedure are: 1) Align the original functional data and obtain the aligned
functions (describing amplitude variability) and the warping functions (describing phase variability). 2) Estimate the
sample means and covariance on the phase and amplitude, respectively. This step uses a nonlinear transformation on
the data to enable use of L2 norm (and cross-sectional computations) for generating summary statistics (see Section 3);
3) Based on the estimated summary statistics, perform fPCA on the phase and amplitude, respectively; 4) Model
the original data by using joint Gaussian or non-parametric models on both fPCA representations; 5) As a direct
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application, the model can be used to perform likelihood-based classification of functional data. We will illustrate this
application using several data sets which include a simulated data set, a signature data set from Yeung et al. (2004),
an iPhone action data set from McCall et al. (2012), and a SONAR data set.

The rest of this paper is organized as follows: Section 2 presents the differential geometric approach for phase
and amplitude separation adapted from Joshi et al. (2007); Srivastava et al. (2011a) and explained in Kurtek et al.
(2011b); Srivastava et al. (2011b). Section 3 presents the functional principal component analysis of these phase and
amplitude components, and statistical modeling of their principal coefficients. These modeling results are presented
in Section 4. Section 5 describes classification of functional data using the developed models on real data sets, and
compares results with some conventional methods. Finally, conclusions and observations are offered in Section 6. We
have developed and R package fdasrvf implementing the proposed functional alignment and fPCA method Tucker
(2012); this package is available on the CRAN archive.

2. Phase and Amplitude Separation Using Elastic Analysis

In this section, we adapt a method introduced for elastic shape analysis of curves in Joshi et al. (2007); Srivastava
et al. (2011a) to the problem of functional data alignment. The details are presented in companion papers Kurtek et al.
(2011b); Srivastava et al. (2011b). This comprehensive framework addresses three important goals: (1) completely
automated alignment of functions using nonlinear time warping, (2) separation of phase and amplitude components of
functional data, and (3) derivation of individual phase and amplitude metrics for comparing and classifying functions.
For a more comprehensive introduction to this theory, including asymptotic results and estimator convergences, we
refer the reader to these two papers as we will only present the algorithm here.

2.1. Mathematical Representation of Functions
Let f be a real-valued function with the domain [0, 1]; the domain can easily be transformed to any other interval.

For concreteness, only functions that are absolutely continuous on [0, 1] will be considered; let F denote the set of
all such functions. In practice, since the observed data are discrete, this assumption is not a restriction. Also, let
Γ be the set of boundary-preserving diffeomorphisms of the unit interval [0, 1]: Γ = {γ : [0, 1] → [0, 1]| γ(0) =

0, γ(1) = 1, γ is a diffeomorphism}. Elements of Γ play the role of warping functions. For any f ∈ F and γ ∈ Γ, the
composition f ◦ γ denotes the time-warping of f by γ. With the composition operation, the set Γ is a group with the
identity element γid(t) = t. This is an important observation since the group structure of Γ is seldom utilized in past
papers on functional data analysis.

In a pairwise alignment problem, the goal is to align any two functions f1 and f2. A majority of past methods use
cost terms of the type (infγ∈Γ ‖ f1− f2◦γ‖) to perform this alignment. Here ‖·‖ denotes the standard L2 norm. However,
this alignment is neither symmetric nor positive definite. To address this and other related problems, Srivastava et al.
(2011a) introduced a mathematical expression for representing a function. This function, q : [0, 1]→ R, is called the
square-root slope function or SRSF of f , and is defined in the following form:

q(t) = sign( ḟ (t))
√
| ḟ (t)| .

It can be shown that if the function f is absolutely continuous, then the resulting SRSF is square-integrable (see
Robinson (2012) for a proof). Thus, we will define L2([0, 1],R), or simply L2, to be the set of all SRSFs. For every
q ∈ L2 and a fixed t ∈ [0, 1], the function f can be obtained precisely using the equation: f (t) = f (0) +

∫ t
0 q(s)|q(s)|ds,

since q(s)|q(s)| = ḟ (s). Therefore, the mapping from F to L2 ×R, given by f 7→ (q, f (0)) is a bijection (see Robinson
(2012)). The most important property of this framework is the following. If we warp a function f by γ, the SRSF of
f ◦ γ is given by: q̃(t) = (q, γ)(t) = q(γ(t))

√
γ̇(t). With this expression it can be shown that for any f1, f2 ∈ F and

γ ∈ Γ, we have
‖q1 − q2‖ = ‖(q1, γ) − (q2, γ)‖ , (2.1)

where q1, q2 are SRSFs of f1, f2, respectively. This is called the isometry property and it is central in suggesting a new
cost term for pairwise registration of functions: infγ∈Γ ‖q1 − (q2, γ)‖. This equation suggests we can register (or align)
the SRSFs of any two functions first and then map them back to F to obtain registered functions. The advantage of
this choice is that it is symmetric, positive definite, and satisfies the triangle inequality. Technically, it forms a proper
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distance1 on the quotient space L2/Γ. We mention that this cost function has a built-in regularization term and does
not require any additional penalty term. Please refer to papers Kurtek et al. (2011b); Srivastava et al. (2011b) for more
details. In case one wants to control the amount of warping or elasticity this can be done as described in Wu and
Srivastava (2011).

The isometric property in Eqn. 2.1 leads to a distance between functions that is invariant to their random warpings:

Definition 1 (Amplitude or y-distance). For any two functions f1, f2 ∈ F and the corresponding SRSFs, q1, q2 ∈ L2,
we define the amplitude or the y-distance Dy to be:

Dy( f1, f2) = inf
γ∈Γ
‖q1 − (q2 ◦ γ)

√
γ̇)‖.

It can be shown that for any γ1, γ2 ∈ Γ, we have Dy( f1 ◦ γ1, f2 ◦ γ2) = Dy( f1, f2).
Optimization Over Γ: The minimization over Γ can be performed in many ways. In case Γ is represented by a
parametric family, then one can use the parameter space to perform the estimation as Kneip and Ramsay (2008).
However, since Γ is a nonlinear manifold, it is impossible to express it completely in a parametric vector space. In this
paper we use the standard Dynamic Programming algorithm (Bertsekas (1995)) to solve for an optimal γ. It should
be noted that for any fixed partition of the interval [0, 1], this algorithm provides the exact optimal γ that is restricted
to the graph of this partition.

2.2. Karcher Mean and Function Alignment

In order to separate phase and amplitude variability in functional data, we need a notion of the mean of functions.
Basically, first we compute a mean function and in the process warp the given functions to match the mean function.
Since we have a proper distance in Dy, in the sense that it is invariant to random warping, we can use that to define
this mean. For a given collection of functions f1, f2, . . . , fn, let q1, q2, . . . , qn denote their SRSFs, respectively. Define
the Karcher mean of the given function as a local minimum of the following cost functions:

µ f = argmin
f∈F

n∑
i=1

Dy( f , fi)2 (2.2)

µq = argmin
q∈L2

n∑
i=1

(
inf
γi∈Γ
‖q − (qi, γi)‖2

)
. (2.3)

(This Karcher mean has also been called by other names such as the Frechet mean, intrinsic mean or the centroid.)
These are two equivalent formulations, one in the function space F and other in the SRSF space L2, i.e., µq =

sign(µ̇ f )
√
|µ̇ f |. Note that if µ f is a minimizer of the cost function, then so is µ f ◦ γ for any γ ∈ Γ since Dy is invariant

to random warpings of its input variables. So, we have an extra degree of freedom in choosing an arbitrary element of
the set {µ f ◦ γ|γ ∈ Γ}. To make this choice unique, we can define a special element of this class as follows. Let {γ∗i }
denote the set of optimal warping functions, one for each i, in Eqn. 2.3. Then, we can choose the µ f to that element
of its class such that the mean of {γ∗i }, denoted by γµ, is γid, the identity element. (The notion of the mean of warping
functions and its computation are described later in Section 3.1 and summarized in Algorithm 2). The algorithm for
computing the Karcher mean µ f of SRSFs is given in Algorithm 1, where the iterative update in Steps 2-4 is based on
the gradient of the cost function given in Eqn. 2.3.

This procedure results in three items:

1. µq, preferred element of the Karcher mean class {(µq, γ)|γ ∈ Γ},
2. {q̃i}, the set of aligned SRSFs, and
3. {γ∗i }, the set of optimal warping functions.

1We note that restriction of L2 metric to SRSFs of functions whose first derivative is strictly positive, e.g., cumulative distribution functions, is
exactly the classical Fisher-Rao Riemannian metric used extensively in the statistics community Amari (1985); Čencov (1982); Efron (1975); Kass
and Vos (1997); Rao (1945).
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Algorithm 1: Phase-Amplitude Separation

1. Compute SRSFs q1, q2, . . . , qn of the given f1, f2, . . . , fn and select µ = qi, where i = argmin1≤i≤n ||qi−
1
n
∑n

j=1 q j||.

2. For each qi find the γ∗i such that γ∗i = argminγ∈Γ
(
‖µ − (qi ◦ γ)

√
γ̇‖

)
. The solution to this optimization comes

from the dynamic programming algorithm.

3. Compute the aligned SRSFs using q̃i 7→ (qi ◦ γ
∗
i )

√
γ̇∗i .

4. If the increment ‖ 1
n
∑n

i=1 q̃i − µ‖ is small, then stop. Else, update the mean using µ 7→ 1
n
∑n

i=1 q̃i and return to
step 2.

5. The function µ represents a whole equivalence class of solutions and now we select the preferred element µq of
that orbit:

(a) Compute the mean γµ of all {γ∗i } (using Algorithm 2). Then compute µq = (µ ◦ γ−1
µ )

√
˙γ−1
µ .

(b) Update γ∗i 7→ γ∗i ◦ γ
−1
µ . Then compute the aligned SRSFs using q̃i 7→ (qi ◦ γ

∗
i )

√
γ̇∗i .

From the aligned SRSFs, one can compute individual aligned functions using: f̃i(t) = fi(0) +
∫ t

0 q̃i(s)|q̃i(s)| ds.
To illustrate this method we run the algorithm on the data previously used in Kneip and Ramsay (2008). The

individual functions are given by: yi(t) = zi,1e−(t−1.5)2/2 + zi,2e−(t+1.5)2/2, t ∈ [−3, 3], i = 1, 2, . . . , 21, where zi,1 and zi,2
are i.i.d. N(1, (0.25)2). (Note that although the elastic framework was developed for functions on [0, 1], it can easily
be adapted to an arbitrary interval). Each of these functions is then warped according to: γi(t) = 6

(
eai (t+3)/6−1

eai−1

)
− 3 if

ai , 0, otherwise γi = γid (γid(t) = t is the identity warping). Here ai are equally spaced between −1 and 1, and the
observed functions are computed using xi(t) = yi◦γi(t). A set of 21 such functions forms the original data and is shown
in Panel (d) of Fig. 2 with corresponding SRSFs in Panel (a). Panel (b) presents the resulting aligned SRSFs using our
method {q̃i} and Panel (c) plots the corresponding warping functions {γ∗i }. The corresponding aligned functions { f̃i} is
shown in Panel (e). It is apparent that the plot of { f̃i} shows a tighter alignment of functions with sharper peaks and
valleys, and thinner band around the mean. This indicates that the effects of warping generated by the γis have been
completely removed and only the randomness from the yis remain.
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Figure 2: Alignment of the simulated data set using Algorithm 1.
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Figure 3: Comparison of alignment algorithms on a difficult unimodal data set (top row) and a real SONAR data set (bottom row).

We also compare the performance of Algorithm 1 with some published methods including; the MBM method
of James (2007) and the MSE method of Ramsay and Silverman (2005) on a more difficult simulated data and a
real SONAR data set. The original simulated data are shown in Fig. 3(a) and the data consists of 39 unimodal
functions which have been warped with equally-spaced centers along the x-axis and have slight variation in peak-
heights along the y-axis. Fig. 3(b)-(d) present the alignment results for our elastic method, the MBM method, and the
MSE method, respectively. The original SONAR data are shown in Fig. 3(e) and the data consists of 131 measured
SONAR signals that contain measurement ambiguity. Fig. 3(f)-(h) present the alignment results for our elastic method,
the MBM method, and the MSE method, respectively. For the simulated data the elastic method performs the best
while the MBM method performs fairly well with a little higher standard deviation. The MBM method and the MSE
method both have a few numerical issues that lead to blips in the functions. For the SONAR data only the elastic
method performs well, as MBM and MSE methods fail to align the data at all. We can also quantify the alignment
performance using the decrease in the cumulative cross-sectional variance of the aligned functions. For any functional
dataset {gi(t), i = 1, 2, . . . , n, t ∈ [0, 1]}, let

Var({gi}) =
1

n − 1

∫ 1

0

n∑
i=1

gi(t) −
1
n

n∑
i=1

gi(t)

2

dt ,

denote the cumulative cross-sectional variance in the given data. With this notation, we define:

Original Variance = Var({ fi}), Amplitude Variance = Var({ f̃i}), Phase Variance = Var({µ f ◦ γi}) .

The phase- and amplitude-variances for the different alignment algorithms shown in Fig. 3 is listed below in Table 1
with the simulated unimodal data on the top two rows and the SONAR data on the bottom two rows: Based on its
superior performance and theoretical advantages, we choose the elastic method for separating the phase and amplitude
components. For additional experiments and asymptotic analysis of this method, please refer to Kurtek et al. (2011b);
Srivastava et al. (2011b).

7



Data Component Original Variance Elastic Method MBM MSE
Unimodal Amplitude-variance 4.33 0.004 0.23 .02

Phase-variance 0 4.65 4.31 4.54
SONAR Data Amplitude-variance 2.89e-5 1.53e-5 3.02e-5 2.42e-5

Phase-variance 0 1.48e-5 1.30e-5 1.36e-5

Table 1: The comparison of the amplitude variance and phase variance for different alignment algorithms on the Unimodal and SONAR data set.

ψid

vi

ψi

Figure 4: Depiction of the SRSF space of warping functions as a sphere and a tangent space at identity ψid .

3. Analysis and Modeling of Components

Having separated functional data into phase and amplitude components, we focus on the task of developing their
generative models.

3.1. Phase-Variability: Analysis of Warping Functions

First, we would like to study the phase-variability of the given functions, available to us in the form of the warping
functions {γ∗i } resulting from Algorithm 1. An explicit statistical modeling of the warping functions can be of interest
to an analyst since they represent the phase-variability of the original data. As mentioned earlier, the space of warping
functions, Γ, is a nonlinear manifold and cannot be treated as a Hilbert space directly. Therefore, we will use tools
from differential geometry to be able to perform statistical analysis and modeling of the warping functions. This
framework has been used previously but in different application areas, e.g., modeling parameterizations of curves
Srivastava and Jermyn (2009) and studies of execution rates of human activities in videos Veeraraghavan et al. (2009).
It also relates to the square-root representation of probability densities introduced by Bhattacharya (1943).

Let γ1, γ2, . . . , γn ∈ Γ be a set of observed warping functions. Our goal is to develop a probability model on Γ that
can be estimated from the data directly. There are two problems in doing this in a standard way: (1) Γ is a nonlinear
manifold, and (2) it is infinite dimensional. The issue of nonlinearity is handled using a convenient transformation
which coincidentally is similar to the definition of SRSF, and the issue of infinite dimensionality is handled using
dimension reduction, e.g., fPCA, which we will call horizontal fPCA. We are going to represent an element γ ∈ Γ by
the square-root of its derivative ψ =

√
γ̇. Note that this is the same as the SRSF defined earlier for fis and takes this

form since γ̇ > 0. The identity map γid maps to a constant function with value ψid(t) = 1. Since γ(0) = 0, the mapping
from γ to ψ is a bijection and one can reconstruct γ from ψ using γ(t) =

∫ t
0 ψ(s)2ds. An important advantage of this
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transformation is that since ‖ψ‖2 =
∫ 1

0 ψ(t)2dt =
∫ 1

0 γ̇(t)dt = γ(1) − γ(0) = 1, the set of all such ψs is a Hilbert sphere
S∞, a unit sphere in the Hilbert space L2. In other words, the square-root representation simplifies the complicated
geometry of Γ to a unit sphere. The distance between any two warping functions is exactly the arc-length between
their corresponding SRSFs on the unit sphere S∞:

Dx(γ1, γ2) = dψ(ψ1, ψ2) ≡ cos−1
(∫ 1

0
ψ1(t)ψ2(t)dt

)
.

Fig. 4 shows an illustration of the SRSF space of warping functions as a unit sphere.
The definition of a distance on S∞ helps define a Karcher mean of sample points on S∞.

Definition 2. For a given set of points ψ1, ψ2, . . . , ψn ∈ S∞, their Karcher mean in S∞ is defined to be a local minimum
of the cost function ψ 7→

∑n
i=1 dψ(ψ, ψi)2.

Now we can define the Karcher mean of a set of warping functions using the Karcher mean in S∞. For a given set
of warping functions γ1, γ2, . . . , γn ∈ Γ, their Karcher mean in Γ is γ̄(t) ≡

∫ t
0 µψ(s)2ds where µψ is the Karcher mean

of
√
γ̇1,
√
γ̇2, . . . ,

√
γ̇n in S∞. The search for this minimum is performed using Algorithm 2:

Algorithm 2: Karcher Mean of Warping Functions
Let ψi =

√
γ̇i be the SRSFs for the given warping functions. Initialize µψ to be one of the ψis or simply w/‖w‖, where

w = 1
n
∑n

i=1 ψi.

1. For i = 1, 2, . . . , n, compute the shooting vector vi = θi
sin(θi)

(ψi − cos(θi)µψ), θi = cos−1
(〈
µψ, ψ

〉)
. By definition,

each of these vi ∈ Tµψ (S∞).
2. Compute the average v̄ = 1

n
∑n

i=1 vi ∈ Tµψ (S∞).
3. If ‖v̄‖ is small, then continue. Else, update µψ 7→ cos(ε‖v̄‖)µψ + sin(ε‖v̄‖) v̄

‖v̄‖ , for a small step size ε > 0 and
return to Step 1.

4. Compute the mean warping function using γ̄(t) =
∫ t

0 µψ(s)2ds. Stop.

Since S∞ is a nonlinear space (a sphere), one cannot perform principal component analysis on it directly. Instead,
we choose a vector space tangent to the space, at a certain fixed point, for analysis. The tangent space at any point
ψ ∈ S∞ is given by: Tψ(S∞) = {v ∈ L2|

∫ 1
0 v(t)ψ(t)dt = 0}. In the following, we will use the tangent space at µψ

to perform analysis. Note that the outcomes of Algorithm 2 include the Karcher mean µψ and the tangent vectors
{vi} ∈ Tµψ (S∞). These tangent vectors, also called the shooting vectors, are the mappings of ψis into the tangent
space Tµψ (S∞), as depicted in Fig. 4. In this tangent space we can define a sample covariance function: (t1, t2) 7→

1
n−1

∑n
i=1 vi(t1)vi(t2). In practice, this covariance is computed using a finite number of points, say T , on these functions

and one obtains a T × T sample covariance matrix instead, denoted by Kψ. The singular value decomposition (SVD)
of Kψ = UψΣψVT

ψ provides the estimated principal components of {ψi}: the principal directions Uψ, j and the observed

principal coefficients
〈
vi,Uψ, j

〉
. This analysis on S∞ is similar to the ideas presented in Srivastava et al. (2005) although

one can also use the idea of principal nested sphere for this analysis Jung et al. (2012).
As an example, we compute the Karcher mean of a set of random warping functions. These warping functions

are shown in the left panel of Fig. 5 and their Karcher mean is shown in the second panel. Using the {vi}’s that result
from Algorithm 2, we form their covariance matrix Kψ and take its SVD. The first three columns of Uψ are used to
visualize the principal geodesic paths in the third, fourth, and fifth panels.

3.2. Amplitude Variability: Analysis of Aligned Functions
Once the given observed SRSFs have been aligned using Algorithm 1, they can be statistically analyzed in a

standard way (in L2) using cross-sectional computations in the SRSF space. This is based on the fact that Dy is the
L2 distance between the aligned SRSFs. For example, one can compute their principal components for the purpose
of dimension reduction and statistical modeling using fPCA. Since we are focused on the amplitude-variability in this
section, we will call this analysis vertical fPCA.
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Figure 5: From left to right: a) the observed warping functions, b) their Karcher mean, c) the first principal direction, d) second principal direction,
and e) third principal direction of the observed data.

Let f1, · · · , fn be a given set of functions, and q1, · · · , qn be the corresponding SRSFs, µq be their Karcher Mean,
and let q̃is be the corresponding aligned SRSFs using Algorithm 1. In performing vertical fPCA, one should not
forget about the variability associated with the initial values, i.e., { fi(0)}, of the given functions. Since representing
functions by their SRSFs ignores this initial value, this variable is treated separately. That is, a functional variable f
is analyzed using the pair (q, f (0)) rather than just q. This way, the mapping from the function space F to L2 × R is
a bijection. In practice, where q is represented using a finite partition of [0, 1], say with cardinality T , the combined
vector hi = [qi fi(0)] simply has dimension (T + 1) for fPCA. We can define a sample covariance operator for the
aligned combined vector h̃ = [q̃1 fi(0)] as

Kh =
1

n − 1

n∑
i=1

E[(h̃i − µh)(h̃i − µh)T] ∈ R(T+1)×(T+1) , (3.1)

where µh = [µq f̄ (0)]. Taking the SVD, Kh = UhΣhVT
h we can calculate the directions of principle variability in the

given SRSFs using the first p ≤ n columns of Uh and can be converted back to the function space F , via integration,
for finding the principal components of the original functional data. Moreover, we can calculate the observed principal
coefficients as

〈
h̃i,Uh, j

〉
.

One can then use this framework to visualize the vertical principal-geodesic paths. The basic idea is to compute a
few points along geodesic path τ 7→ µh+τ

√
Σh, j jUh, j for τ ∈ R in L2, where Σh, j j and Uh, j are the jth singular value and

column, respectively. Then, obtain principle paths in the function space F by integration as described earlier. Figure
6 shows the results of vertical fPCA on the simulated data set from Fig. 2. It plots the vertical principal-geodesic paths
of the SRSFs, qτ, j for τ = −2,−1, 0, 1, 2 and j = 1, 2, 3 and the vertical principal-geodesic paths in function space.
The first 3 singular values for the data are: 0.0481, 0.0307, and 0.0055 with the rest being negligibly small. The
first principal direction corresponds to the height variation of the second peak while the second principal component
captures the height variation of the first peak. The third principal direction has negligible variability.

3.3. Modeling of Phase and Amplitude Components

To develop statistical models for capturing the phase and amplitude variability, there are several possibilities.
Once we have obtained the fPCA coefficients for these components we can impose probability on the coefficients
and induce a distribution on the function space F . Here we explore two possibilities: a joint Gaussian model and a
non-parametric model.

Let c = (c1, . . . , ck1 ) and z = (z1, . . . , zk2 ) be the dominant principal coefficients of the amplitude- and phase-
components, respectively, as described in the previous two sections. Recall that c j =

〈
h̃,Uh, j

〉
and z j =

〈
v,Uψ, j

〉
. We

can reconstruct the amplitude component using q = µq +
∑k1

j=1 c jUh, j and f s(t) = f s(0) +
∫ t

0 q(s)|q(s)|ds. Here, f s(0) is

a random initial value. Similarly, we can reconstruct the phase component (a warping function) using v =
∑k2

j=1 z jUψ, j

and then using ψ = cos(‖v‖)µψ + sin(‖v‖) v
‖v‖ , and γs(t) =

∫ t
0 ψ(s)2ds. Combining the two random quantities, we obtain

a random function f s ◦ γs.
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Figure 6: Vertical fPCA of aligned functions in simulated data set of Fig. 2. The first row shows the main three principal directions in SRSF space
and the second row shows the main three principal directions in function space.

3.3.1. Gaussian Models on fPCA Coefficients
In this setup the model specification reduces to the choice of models for f s(0), c, and z. We are going to model

them as multivariate normal random variables. The mean of f s(0) is f̄ (0) while the means of c and z are zero vectors.

Their joint covariance matrix is of the type:

 σ
2
0 L1 L2

LT
1 Σh S

LT
2 S Σψ

 ∈ R(k1+k2+1)×(k1+k2+1). Here, L1 ∈ R1×k1 captures the

covariance between f (0) and c, L2 ∈ R1×k2 between f (0) and z, and S ∈ Rk1×k2 between c and z. As discussed in the
previous sections Σh ∈ Rk1×k1 and Σψ ∈ Rk2×k2 are diagonal matrices and are estimated directly from the data. We will
call this resulting probability model on the fPCA coefficients as pGauss.

3.3.2. Non-parametric Models on fPCA Coefficients
An alternative to the Gaussian assumption made above is the use of kernel density estimation Silverman (1998),

where the density of f s(0), each of the k1 components of c, and the k2 components of z can be estimated using

pker(x) =
1

nb

n∑
i=1

K

( x − xi

b

)
where K(·) is the smoothing kernel, which is a symmetric function that integrates to 1, and b > 0 is the smoothing
parameter or bandwidth. A range of kernel functions can be used, but a common choice is the Gaussian kernel.

4. Modeling Results

We will now evaluate the models introduced in the previous section using random sampling. We will first estimate
the means and the covariances from the given data, estimate the model parameters, and then generate random samples
based on these estimated models. We demonstrate results on two simulated data sets used in Figs. 2 and 3 and one
real data set being the Berkeley growth data2. For the first simulated data set, shown in Fig. 2, we randomly generate
35 functions from the amplitude model and 35 domain-warping functions from the phase model and then combine
them to generate random functions. The corresponding results are shown in Fig. 7, where the first panel is a set of
random warping functions, the second panel is a set of corresponding amplitude functions, and the third panel shows

2http://www.psych.mcgill.ca/faculty/ramsay/datasets.html
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their compositions. Comparing them with the original datasets (Fig. 2) we conclude that the random samples are very
similar to the original data and, at least under a visual inspection, the proposed models are successful in capturing the
variability in the given data. Furthermore, if we compare these sampling results to the fPCA-based Gaussian model

0 0.5 1

0

0.2

0.4

0.6

0.8

1

−3 0 3

0.3

0.8

1.3

−3 0 3

0.3

0.8

1.3

−3 0 3

0.3

0.8

1.3

Figure 7: Random samples from jointly Gaussian models on fPCA coefficients of γs (left) and f s (middle), and their combinations f s ◦ γs (right)
for Simulated Data 1. The last plot are random samples if a Gaussian model is imposed on f directly without any phase and amplitude separation.

directly on f (without separating the phase and amplitude components) in the last panel of Fig. 7, we notice that our
model is more consistent with the original data. A good portion of the samples from the non-separated model just
contain three peaks or have a higher variation than the original data and some barely represent the original data.

For the second simulated data set we use the data shown in Fig. 3 and perform vertical and horizontal fPCA.
As before, we randomly generate 35 functions from the amplitude model and 35 domain-warping functions from
the phase model and then combine them to generate random functions. The corresponding results are shown row of
Fig. 8, where the first panel is a set of random warping functions, the second panel is a set of corresponding amplitude
functions, and the last panel shows their compositions. Comparing them with the original data in Fig. 3 we conclude
that the random samples are very similar to the original data and, under visual inspection, the proposed models are
successful in capturing the variability in the given data. In this example performing fPCA directly on the function
space does not correctly capture the data and fails to generate any single unimodal function shown in the last panel.
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Figure 8: Random samples from jointly Gaussian models on fPCA coefficients of γs (left) and f s (middle), and their combinations f s ◦ γs (right)
for Simulated Data 2. The last panel shows the random samples resulting from a Gaussian model imposed on f directly.

For the Berkley growth data we again develop our phase and amplitude models then randomly generate 35 func-
tions from the amplitude model and 35 domain-warping functions from the phase model. Then, we compose them
to generate random functions. The corresponding results are shown row of Fig. 9, where the first panel is a set of
random warping functions, the second panel is a set of corresponding amplitude functions, and the last panel shows
their compositions. Comparing them with the original data set in the last panel we conclude that the random samples
are similar to the original data and, at least under a visual inspection, the proposed models are successful in capturing
the variability in the given data.

5. Classification Using Phase and Amplitude Models

An important use of statistical models of functional data is in classification of future data into pre-determined
categories. Since we have developed models for both amplitude and phase, one or both can be used for classification
and analyzed for their performance. Here we use a classical setup: a part of the data is used for training and estimation
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Figure 9: From left to right: Random samples from jointly Gaussian models on fPCA coefficients of γs and f s, respectively, and their combinations
f s ◦ γs for the Berkley Growth Data. The last panel shows the original data used in this experiment.

of model parameters while the remaining part is used for testing. This partition is often random and repeated many
times to obtain an average classification performance.

Amplitude-Based Classification: As described earlier, we can impose a probability model on the amplitude com-
ponents data using the principal subspace associated with the aligned SRSFs. The actual model is imposed on the
principal coefficients (c1, c2, . . . , ck1 ), with respect to the basis Uh,1,Uh,2, . . . ,Uh,k1 . These basis elements, in turn, are
determined using the training data. We can select a k1 such that the cumulative energy

∑k1
j=1 Σh, j j/

∑T+1
j=1 Σh, j j is above

a certain threshold, e.g., 90 percent. There are two choices of models: Gaussian and kernel-density estimator. Clas-
sification is performed by constructing the appropriate models for each class C1, · · · ,CL of the data. Then, for a test
sample h̃ j ∈ RT+1 project it to the principal subspace using an orthonormal basis Uhl ∈ R(T+1)×k1 , one for each class,
and calculate the likelihood under each class. The model with the largest likelihood represents the class assigned to
h̃ j. Therefore, our classification rule is:

classify(h̃ j) = argmax
Cl

pa(UT
hlh̃ j|Khl, µhl) , where pa = pGauss or pker . (5.1)

Phase-Based Classification: Similarly, for the phase components, we can represent the shooting vectors, {vi}, in a
lower order dimensional space using the first k2 columns of Uψ. Where k2 can be chosen similar to k1 as described
above. Once again, we can either define a Gaussian model or a kernel density estimator on these principal coefficients.
We can estimate the model parameters for each class C1, · · · ,CL using the training data. Then, for a test sample’s
shooting vector v j, we project it to each model’s subspace and calculate the likelihood of v j under each pre-determined
class. Therefore, our classification rule is:

classify(v j) = argmax
Cl

pψ(UT
ψlv j|Kψl) where pψ = pGauss or pker . (5.2)

Joint Classification: Assuming independence we can combine the amplitude and phase classification rules as,

classify(h̃ j, v j) = argmax
Cl

pa(UT
hlh̃ j|Khl, µhl)pψ(UT

ψlv j|Kψl) (5.3)

and classification is as described previously.

In this section, we present the classification results on a signature data Yeung et al. (2004), an iPhone-generated
action data set from McCall et al. (2012), and a SONAR data set using models developed using vertical and horizontal
fPCA.

5.1. Signature Data
In this section, we test our classification method on a signature recognition data set from Yeung et al. (2004). The

data was captured using a WACOM Intuos tablet. The data set consists of signature samples from 40 different subjects
with 20 real signature samples of the subject and another 20 samples which are forgeries of the subject’s signature. In
our analysis we are going to distinguish between the real and forged signature for two of the subjects using the tangen-
tial acceleration. The tangential acceleration is computed as A(t) =

√
[X′′(t)]2 + [Y ′′(t)]2. To have a robust estimate of
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the SRSF {qi}, we first smooth the original functions 100 times { fi} using a standard box filter [1/4, 1/2, 1/4]. That is,
numerically we update the signals at each discrete point by fi(xk) →

(
1
4 fi(xk−1) + 1

2 fi(xk) + 1
4 fi(xk+1)

)
. The smoothed

acceleration functions are aligned in each class (real vs. fake) using our alignment algorithm from Section 2. An
example signature with 10 realizations is shown in Fig. 10 along with the corresponding acceleration functions for
both the real and fake signatures, the corresponding aligned functions, and warping functions.
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Figure 10: From left to right: the original signature samples for one of the subjects, the corresponding tangential acceleration functions for both
the real and fake signatures, the corresponding aligned functions, and warping functions.

Models were generated for the three classes, as was outlined in Section 3.3, by performing vertical and horizontal
fPCA on the aligned data and the warping functions, respectively. We then impose a multivariate Gaussian model,
pGauss, on the reduced data for each class, it is assumed here that the cross-covariances L1 and L2 are zero. The
threshold to select the number of dimensions, k1 and k2, was set at 95%. Classification for the amplitude component
only was performed as described in Section 5 using the classification rule in (Eqn. 5.1) and was evaluated using 5-fold
cross-validation. Similarly, the classification rule in (Eqn. 5.2) were used for the phase component. Moreover, the
joint classification was performed using (Eqn. 5.3). Table 2a presents the the mean and standard deviation (shown
in parentheses) of the classification rates from the cross-validation for the three rules. As well as comparing to the
standard L2 where models were generated directly on the original data, dimension reduction with fPCA, and imposing
a multivariate normal distribution. Corresponding results for another subject, U13 is presented in Table 2b.

Gaussian Kernel Density
amplitude only 0.93 (0.07) 0.78 (0.19)

phase only 0.65 (0.16) 0.75 (0.09)
phase and amplitude 0.90 (0.05) 0.80 (0.07)

standard L2 0.60 (0.14) 0.55 (0.11)
(a) Subject U1

Gaussian Kernel Density
amplitude only 0.75 (0.14) 0.78 (0.21)

phase only 0.50 (0.01) 0.50 (0.01)
phase and amplitude 0.58 (0.11) 0.60 (0.10)

standard L2 0.50 (0.01) 0.53 (0.06)
(b) Subject U13

Table 2: Mean classification rate and standard deviation (in parentheses) for 5-fold cross-validation on the signature data.

The classification rates have a low standard deviation indicating good generalization, though we do have a little
variation for the phase only model. For both subjects the amplitude only rule greatly outperforms both the phase only
rule and the standard L2 with the best performance of 93% and 75% for subjects U1 and U13, respectively. Since
the phase only rule performs poorly combining it with the amplitude only rule brings down the overall performance.
The alignment and modeling using a proper distance improves the overall classification performance of the data. To
compare the results between pGauss and pkern, we classified the data again forming models using pkern which was
discussed in Section 5, where each of the k1 and k2 components has an estimated density using a kernel density
estimator and independence is assumed. We used the Gaussian kernel function and the bandwidth was selected
automatically based upon the data using the method presented by Botev et al. (2010). Classification using the three
classification rules was performed using 5-fold cross-validation. Table 2a and Table 2b present the the mean and
standard deviation of the classification rates from the cross-validation for the three rules as well as comparing to the
standard L2. Models were generated directly on the original data using fPCA and the kernel density estimator for
subjects U1 and U13, respectively. We see an improvement in the phase only method for subject U1 and reduction in
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Figure 11: Original iPhone functions for the walking, jumping, and climbing activities in the first column (in corresponding descending order) with
the corresponding aligned functions and warping functions in the second and third columns, respectively.

performance for the other methods, this suggest the warping functions have some non-Gaussian behavior. However,
for subject U13 there is a minimal change between the Gaussian and kernel estimator.

5.2. iPhone Action Data

This data set consists of aerobic actions recorded from subjects using the Inertial Measurement Unit (IMU) on
an Apple iPhone 4 smartphone. The IMU includes a 3D accelerometer, gyroscope, and magnetometer. Each sample
was taken at 60Hz, and manually trimmed to 500 samples (8.33s) to eliminate starting and stopping movements and
the iPhone is always clipped to the belt on the right hand side of the subject. There is a total of 338 functions for
each measurement on the IMU and the actions recorded consisted of biking, climbing, gym bike, jumping, running,
standing, treadmill, and walking. The number of samples being 30, 45, 39, 45, 45, 45, 44, and 45, respectively for
each action. For more information on the data set the reader is referred to McCall et al. (2012). For our experiments
we used the accelerometer data in the x-direction. Again, to have a robust estimate of the SRSF {qi}, we first smooth
the original signals 100 times { fi} using the standard box filter described in the previous section. As with the previous
data set, the smoothed iPhone data are aligned in each class (activity) using our method. A selected subset of functions
from three activities is shown in Fig. 11 along with corresponding aligned functions and warping functions.

To perform the classification, models were generated for the 8 classes by performing vertical and horizontal fPCA
on the aligned data and the warping functions then imposing a multivariate Gaussian on the reduced data for each class.
The threshold to select the number of dimensions, k1 and k2, was set at 95%. Classification was performed as in the
previous section. Table 3 presents the mean and standard deviation of the classification rates for the cross-validation
for all three rules as well as comparing to the standard L2. The classification rates have a low standard deviation
indicating good generalization. The phase only rule and the amplitude only rule, drastically out perform the standard
L2 with the combination providing the best performance at 62%. The alignment and modeling using a proper distance
improves the overall classification performance of the data. We again used the kernel density estimator to compare
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Gaussian Kernel Density
amplitude only 0.60 (0.04) 0.62 (0.05)

phase only 0.34 (0.06) 0.35 (0.06)
phase and amplitude 0.62 (0.08) 0.62 (0.07)

standard L2 0.12 (0.02) 0.12 (0.02)

Table 3: Mean classification rate and standard deviation (in parentheses) for 5-fold cross-validation on the iPhone data.

the results with the Gaussian kernel and the results are presented in Table 3. Using the kernel density estimator we
see only minor improvements in the phase only rule, suggesting the Gaussian assumption is sufficient for this data.

5.3. SONAR Data

The data set used in these experiments was collected at the Naval Surface Warfare Center Panama City Division
(NSWC PCD) test pond. For a description of the pond and measurement setup the reader is referred to Kargl et al.
(2010). The raw SONAR data was collected using a 1 - 30kHz LFM chirp and data was collected for nine proud
targets that included a solid aluminum cylinder, an aluminum pipe, an inert 81mm mortar (filled with cement), a solid
steel artillery shell, two machined aluminum UXOs, a machined steel UXO, a de-militarized 152mm TP-T round, a
de-militarized 155mm empty projectile (without fuse or lifting eye), and a small aluminum cylinder with a notch. The
aluminum cylinder is 2 f t long with a 1 f t diameter; while the pipe is 2 f t long with an inner diameter of 1 f t and 3/8
inch wall thickness.

The acoustic signals were generated from the raw SONAR data to construct target strength as a function of fre-
quency and aspect angle. Due to the relatively small separation distances between the targets in the measurement
setup, the scattered fields from the targets overlap. To generate the acoustic templates (i.e., target strength plot of
frequency versus aspect), synthetic aperture sonar (SAS) images were formed and then an inverse imaging technique
was used to isolate the response of an individual target and to suppress reverberation noise. A brief summary of
this process is as follows: The raw SONAR data are matched filtered and the SAS image is formed using the ω − k
beamformer Soumekh (1999). The target is then located in the SAS image and is windowed around selected location.
This windowed image contains the information to reconstruct the frequency signals associated with a given target via
inverting the ω− k beamformer Khwaja et al. (2005) and the responses were aligned in rage using the known acquisi-
tion geometry. For the nine targets, 2000 different data collections runs were done, and 1102 acoustic color templates
were generated using the method described above from the data set. From the acoustic color maps, one-dimensional
functional data was generated by taking slices at aspect value of 0◦ and therefore generating 1102 data samples. We
will apply our method to this SONAR data, where there are n = 1102 SONAR signals with nine target classes and
the numbers of functions in the nine classes are {ni}

9
i=1 = {131, 144, 118, 118, 121, 119, 120, 114, 117} and are sampled

using 483 points. A selected subset of functions in each class from the original data is shown in Fig. 12. We observe
that the original data are quite noisy, due to both the compositional and the additive noise, increasing variability within
class and reducing separation across classes. This naturally complicates the task of target classification using SONAR
signals.

To again have a robust estimate of the SRSF {qi}, we first smooth the original signals 25 times { fi} using the
standard box filter described previously. As with the previous data sets, the smoothed SONAR data are aligned in
each class using our method. Models were generated for the three classes by performing vertical and horizontal fPCA
on the aligned data and the warping functions then, imposing a multivariate Gaussian on the reduced data for each
class, with the aligned data shown in Fig. 13. The threshold to select the number of dimensions, k1 and k2, was set at
90%. Table 4 presents the classification rates for the cross-validation for all three rules as well as comparing to the
standard L2.

The classification rates have low standard deviation indicating good generalization for the SONAR data. The phase
only rule and the amplitude only rule out perform the standard L2 with the combination providing the best performance
at 54%. The alignment and modeling using a proper distance improves the overall classification performance of
the data. We again used the kernel density estimator to compare the results with the Gaussian assumption and the
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Figure 12: Original SONAR functions in each of the nine classes.

Gaussian Kernel Density
amplitude only 0.44 (0.03) 0.47 (0.02)

phase only 0.42 (0.02) 0.43 (0.02)
phase and amplitude 0.54 (0.03) 0.53 (0.03)

standard L2 0.33 (0.01) 0.34 (0.02)

Table 4: Mean classification rate and standard deviation (in parentheses) for 5-fold cross-validation on SONAR data.

results are presented in Table 4. Using the kernel density estimator we see improvements in the classification results.
However, nothing is a dramatic improvement suggesting the Gaussian assumption is sufficient for this data.

6. Conclusions

The statistical modeling and classification of functional data with phase variability is a challenging and compli-
cated task. We have proposed a comprehensive approach that solves the problem of registering and modeling functions
in a joint, metric-based framework. The main idea is to use an elastic distance to separate the given functional data
into phase and amplitude components, and to develop individual models for these components. The specific models
suggested in this paper use fPCA and imposition of either multivariate Gaussian or nonparametric models on the co-
efficients. The strengths of these models are illustrated in two ways: random sampling and model-based classification
of functional data. In the case of classification, we consider applications involving handwritten signatures, motion
data collected using iPhones, and SONAR signals. We illustrate the improvements in classification performance when
the proposed models involving separate phase and amplitude components are used.
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Figure 13: Aligned and Smoothed SONAR functions in each of the nine classes.
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